Lossless Compression of Volume Data

James E. Fowler† Roni Yagel‡
†Department of Electrical Engineering
‡Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

Abstract
Data in volume form consumes an extraordinary amount of storage space. For efficient storage and transmission of such data, compression algorithms are imperative. However, most volumetric datasets are used in biomedicine and other scientific applications where lossy compression is unacceptable. We present a lossless data-compression algorithm which, being oriented specifically for volume data, achieves greater compression performance than generic compression algorithms that are typically available on modern computer systems. Our algorithm is a combination of differential pulse-code modulation (DPCM) and Huffman coding and results in compression of around 50% for a set of volume data files.

I. Introduction
Compression for efficient storage and transmission of digital data has become routine as the application of such data has grown. Several common data-compression programs are readily available on many computers to fight the burgeoning demand for storage space. These programs are typically generic; that is, they can compress data regardless of its nature. It is common that a single program is used to compress not only English text, but also source code, executable binaries, and raw data. Although generic programs have some advantages, such as greater portability, it may be worthwhile, in cases in which the demand for storage space is particularly high, to consider compression algorithms that have been tailored specifically for a single application.

One such application is volume graphics, the extension of computer graphics that addresses rendering directly from volume data. Since volume size grows as the cube of the resolution, even a moderate-resolution volume requires a great amount of storage space. For example, consider a computerized-tomography (CT) volume of 256 × 256 × 256 voxels.

II. Data Compression Techniques
Data compression is the encoding of a body of data, D, as a smaller body of data, \(\hat{D} \) [1]. There are two general types of data compression: lossy and lossless. In lossless data compression, it is possible to reconstruct exactly the original data D given \(\hat{D} \). Such reconstruction is called decompression. Lossless compression is commonly used in applications, such as text compression, where the loss of even a single bit is unacceptable. On the other hand, in lossy compression, decompression produces only an approximation, \(\hat{D} \), to the original data D. Lossy compression is often used for applications such as image compression. Oftentimes with image compression, it is important that the decompressed image only looks like the original image; usually, it is not necessary to reproduce the image exactly, particularly if the image is being used for entertainment purposes. However, for applications such as medical imaging, lossy compression is generally unacceptable. Great expense is taken to acquire medical images with a high degree of precision and these images are often used to identify tumors and other anomalies; distortion of the image due to compression may cause a false identification of a nonexistent tumor or the overlooking of a real one.

In this paper, we will limit ourselves to the con-
consideration of lossless compression, as lossy methods are generally unfit for data archiving. Moreover, volumes are used mainly in scientific applications where great effort is invested in reconstructing high-quality volumes. These are used for diagnosis, treatment planning, and scientific observation for which lossy compression is unacceptable. Below, we discuss some of the more common lossless techniques. Storer provides a detailed discussion of these and other lossless-compression algorithms in [1].

III. Lossless Compression

One of the most common lossless compression techniques is entropy coding, which capitalizes on the basic tenet of information theory, entropy. Given a data source that outputs symbols from an alphabet, Σ, the entropy of the source is defined as

\[H = - \sum_{i=1}^{k} p_i \log_2 p_i \] \hspace{1cm} (1)

where \(k = |\Sigma| \) and \(p_i \) is the probability of occurrence of the \(i \)th symbol of \(\Sigma \). It is assumed that the source outputs the current symbol independently of the past outputs. Entropy can be viewed as a measure of “information” or “randomness” of the source; the greater the entropy, the more “information” is contained in each symbol output by the source [2]. Table 1 shows the entropy of the test volumes used later to generate results. These volumes are from the Chapel Hill volume-rendering test dataset and are taken from actual MRI, CT, and electron-density-map data.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Original voxel size (bits/voxel)</th>
<th>Entropy (bits/voxel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3dknee.vox</td>
<td>16</td>
<td>9.58</td>
</tr>
<tr>
<td>CThead.vox</td>
<td>16</td>
<td>7.91</td>
</tr>
<tr>
<td>MRbrain.vox</td>
<td>16</td>
<td>7.93</td>
</tr>
<tr>
<td>3dhead.vox</td>
<td>16</td>
<td>8.65</td>
</tr>
<tr>
<td>sod30.vox</td>
<td>8</td>
<td>3.28</td>
</tr>
<tr>
<td>hiphiph.vox</td>
<td>16</td>
<td>10.29</td>
</tr>
<tr>
<td>ma.vox</td>
<td>16</td>
<td>7.97</td>
</tr>
</tbody>
</table>

\(\epsilon > 0 \) is an arbitrarily small quantity. The most common form of entropy encoding is Huffman coding [4], which attempts to match the source entropy by assigning shorter codes to source symbols that occur frequently and longer codes to those symbols with small probability of occurrence.

Another common technique of lossless compression is the family of textural-substitution algorithms, of which Lempel-Ziv [5, 6, 7] is the most popular. The Lempel-Ziv (LZ) algorithm codes repeated variable-length substrings as fixed-length codes. LZ coding does not rely on prior knowledge of the source statistics but rather determines a “dictionary” of substrings from the source as coding progresses. For a well-behaved source, the dictionary will contain strings which have an almost equal probability of occurrence. Thus, dictionary strings containing frequently used symbols are longer than those strings containing infrequent symbols [7]. For a sufficiently well-behaved source, LZ coding achieves the lower bit-rate bound given by the source entropy of (1).

These lossless compression techniques have been implemented in programs found on many UNIX systems. gzip and zip (and PKZIP on MSDOS systems) implement LZ compression as described above. compress implements LZW compression [7], a variant of the basic LZ algorithm. pack implements Huffman coding. Each of these programs is designed to compress computer files regardless of the type of data they contain. Below, we compare the performance of each of these programs with our volume-compression algorithm on several volume data files.

IV. Volume Compression

Despite its extraordinary size, much of the information in a volume array is redundant. Although all data-compression techniques exploit data redundancy to achieve compression, different techniques do so differently. Lossless compression techniques such as Huffman coding and LZ coding as discussed above can be thought of as removing “statistical redundancy” from the data. However, since we know that our data is in the form of a volume, and that volumes possess some local spatial coherence, we can remove this “spatial redundancy” as well to achieve greater compression.

There has been relatively little research reported that deals directly with the issue of lossless volumetric compression. One early scheme was developed for the archiving of CT-image volumes and used run-length encoding for very simple, yet very fast, lossless compression [8]. Compression of around 40% was re-
ported for this scheme; however, a significant portion of this figure was due to the fact that 12-bit voxel integers were stored with 16 bits each in the original volume.

There has been more interest in lossy volume compression. Much of the early work in this area stemmed from attempts to compress television images by considering the sequence of frames as a volume. The use of 3D transforms [9] is one approach that is equally applicable to general volumes as it is to television data. An example of this approach is [10], in which a Hadamard transform is used for real-time television compression.

More recently, there has been some interest in lossy compression coupled with volume rendering [11, 12, 13]. One proposal [11, 12] uses vector quantization to compress the volume, and in [13], a discrete Hartley transform is used for compression. These approaches are lossy and are intended to expedite the rendering process.

Lossy compression can be quite useful in the realm of volume visualization since lossy techniques allow for quick previewing of volumes directly from the compressed data. Also, lossy compression schemes usually result in much greater compression than that obtainable by lossless methods. However, many applications, particularly those in the medical domain, require access to the original volume dataset. Lossless compression allows for the efficient storage of the original volumes in an undistorted form. Thus, one can visualize a two-tiered volume-archiving system which combines both lossy and lossless compression. In this scheme, a volume is stored in two compressed forms. Lossy compression is used to generate a greatly reduced representation of the volume to be used to search and preview the dataset. The original volumes are separately archived using lossless compression so that, after selecting a previewed volume, it may be retrieved undistorted for detailed analysis. Below, we present an algorithm designed specifically for lossless compression of volume data that yields better compression than [8] and can be used for archiving as mentioned above. Additionally, it achieves greater compression than the generic algorithms discussed in the previous section.

V. Algorithm Details

The algorithm we propose for volume compression is a combination of differential pulse-code modulation (DPCM) and Huffman coding. Both techniques have been used extensively in compression of 2D images; for an overview, see [9]. Theoretical performance of

![Block diagram of the volumetric compression algorithm](image)

Figure 1: Block diagram of the volumetric compression algorithm

...entropy encoding to improve DPCM is discussed in [14]. DPCM belongs to a family of compression algorithms known as predictive techniques. In a volume, adjacent voxels usually possess a high degree of spatial coherence; that is, adjacent voxel values are highly correlated. Predictive techniques exploit this spatial coherence and encode only the new information between successive voxels. Predictive techniques feature a predictor that calculates a value from previously encoded voxels. This predicted value is subtracted from the current voxel. Thus, only the new information provided by the current voxel is encoded.

Fig. 1 shows the block diagram of our volume-compression algorithm. The volume, \(v(x, y, z)\), is read in raster-scan order. A predicted value, \(\hat{v}(x, y, z)\), is subtracted from each voxel value, creating a stream of difference values, \(d(x, y, z)\), which are then Huffman coded. The channel shown in Fig. 1 is the archive system which is, in most cases, a disk drive.

A. The Predictor

We assume that the voxel array, \(v(x, y, z)\), is a wide-sense stationary random process (we return to validity of this assumption later). The predictor is of the following form:

\[
\tilde{v}(x, y, z) = a_1v(x-1, y, z) + a_2v(x, y-1, z) + a_3v(x, y, z-1)
\]

Note that the predictor is causal; that is, the prediction is formed from only those values which have already been processed. Causality is required so that
the decoder can track the operation of the encoder and generate the same predicted values as the encoder.

The predictor coefficients, \(a_i\), are determined so that the predictor is optimal in the mean-square-error sense. We must calculate new predictor coefficients for each volume which we encode. The basic derivation of this calculation follows; more detail on optimal linear predictors can be found in [9].

To be optimal, the predictor must minimize the variance of the error process. The error process is

\[
e(x, y, z) = v(x, y, z) - \hat{v}(x, y, z)
\]

and its variance is

\[
\rho^2 = E[e^2(x, y, z)]
\]

where \(E[\cdot]\) is the probabilistic expectation operator. This minimization occurs when the error is orthogonal to the voxels upon which we are basing the prediction:

\[
E[e(x, y, z)v(x - 1, y, z)] = 0
\]

\[
E[e(x, y, z)v(x, y - 1, z)] = 0
\]

\[
E[e(x, y, z)v(x, y, z - 1)] = 0
\]

After some algebra, we arrive at:

\[
\begin{bmatrix}
 r(0, 0, 0) & r(1, -1, 0) & r(1, 0,-1) \\
 r(-1, 1, 0) & r(0, 0, 0) & r(0, 1, -1) \\
 r(-1, 0, 1) & r(0, -1, 1) & r(0, 0, 0)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
= \begin{bmatrix}
r(1, 0, 0) \\
r(0, 1, 0) \\
r(0, 0, 1)
\end{bmatrix}
\]

where \(r(x, y, z)\) is the covariance of \(v(x, y, z)\),

\[
r(x, y, z) = E[v(x', y', z')v(x' - x, y' - y, z' - z)]
\]

and \(x', y',\) and \(z'\) are dummy variables over which the expectation is performed. Once we have determined the covariance, the predictor coefficients, \(a_i\), are determined by solving the linear system of (8).

In presenting this derivation, we make several assumptions. First, we assume that \(v(x, y, z)\) has zero mean; that is,

\[
\bar{v} = E[v(x, y, z)] = 0
\]

In general, real volume data will have a nonzero mean which we will have to subtract from \(v(x, y, z)\) before we use (2). Secondly, we assume that the volume is wide-sense stationary; that is, the statistics (mean and covariance) do not vary throughout the volume. For real volume data, this stationarity does not hold — we will return to this point later.

Below, we make the assumption that random process \(v(x, y, z)\) is also ergodic; that is, we assume that the sample mean and sample covariance given later in (11) and (12) converge to their true ensemble values given by (10) and (9), respectively.

The predictor presented here is optimal in the mean-square-error sense. In many cases, this optimality may be overkill; good results may oftentimes be obtained from a simple predictor whose coefficients are fixed in advance. One such simple predictor is obtained by setting \(a_1 = a_2 = a_3 = \frac{1}{2}\), which works reasonably well in practice if the voxel-sampling lattice is isotropic; i.e., the voxels are cubic. The advantage of the optimal predictor is that it will automatically compensate for non-isotropic sampling. In addition, calculation of the optimal predictor is not very costly, as it takes only about 6% of the total compression time.

For simplicity, we have designed our predictor using causal voxels from only the 6-neighborhood; i.e. those voxels that share a face with the current voxel. Alternatively, one could include voxels from the 18- or 26-neighborhoods (respectively, those voxels sharing an edge or a vertex with the current voxel). As these voxels are more distant from the current voxel, they will be less effective in prediction; however, further study is warranted to determine whether the improvement they can offer to the prediction is worth the additional complexity of calculating more predictor coefficients.

B. The Huffman Coder

An algorithm for the construction of a codebook for Huffman coding is presented in [9]. In our volume-compression algorithm, we use a variant of Huffman coding called truncated Huffman coding [9]. If the number of possible source symbols is \(L\), the longest possible Huffman code can have as many as \(L\) bits. Thus, in practical situations that require a large \(L\), a truncated Huffman code is used. In truncated Huffman coding, the first \(L_1\) most-probable symbols (\(L_1 < L\) are Huffman coded and the remaining \(L - L_1\) symbols are assigned a fixed-length code. Thus, the maximum code length is restricted to a manageable length. For a volume with 16 bits per voxel, \(L = 131,071\) (16 bits/voxel yields difference values in the range \(-66535\) to \(65536\)). We set \(L_1 = 256\) in the implementation of our algorithm. For our test dataset of volumes and this value of \(L_1\), the probability that a given symbol is one of the first \(L_1\) most-probable symbols (and thus gets coded with a short code) is around 80%.
One should note that, although Huffman coding is theoretical optimal [2], other entropy-coding techniques, particularly arithmetic coding [15], have been shown to achieve better performance in practice. We use a Huffman coder since it is quite easy to implement. We will return to this issue later in the paper.

C. The Compression Algorithm

Our volume compression algorithm is given below. To compress a given volume of size XYZ voxels, the following steps are performed:

1. Scan the volume to estimate the mean of the random process:

 \[
 \bar{v} = \frac{1}{XYZ} \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} \sum_{z=0}^{Z-1} v(x, y, z) \quad (11)
 \]

2. Scan the volume to estimate the covariance:

 \[
 \tau(x, y, z) = \frac{1}{(X-2)(Y-2)(Z-2)} \sum_{x'=1}^{X-2} \sum_{y'=1}^{Y-2} \sum_{z'=1}^{Z-2} \left[(v(x', y', z') - \bar{v}) \times (v(x' + x, y' + y, z' + z) - \bar{v}) \right] \quad (12)
 \]

 for $x, y, z \in \{-1, 0, 1\}$.

3. Calculate the predictor coefficients, a_1, a_2, and a_3, from (8) using the estimated covariance values.

4. Scan the volume using the predictor to calculate the difference values, $d(x, y, z)$:

 \[
 v_1(x, y, z) = \begin{cases}
 0 & \text{if } x = 0 \\
 v(x - 1, y, z) - \bar{v} & \text{else}
 \end{cases} \quad (13)
 \]

 \[
 v_2(x, y, z) = \begin{cases}
 0 & \text{if } y = 0 \\
 v(x, y - 1, z) - \bar{v} & \text{else}
 \end{cases} \quad (14)
 \]

 \[
 v_3(x, y, z) = \begin{cases}
 0 & \text{if } z = 0 \\
 v(x, y, z - 1) - \bar{v} & \text{else}
 \end{cases} \quad (15)
 \]

 \[
 \bar{v}(x, y, z) = a_1 v_1(x, y, z) + a_2 v_2(x, y, z) + a_3 v_3(x, y, z) \quad (16)
 \]

 \[
 d(x, y, z) = v(x, y, z) - \bar{v}(x, y, z) \quad (17)
 \]

5. Count the number of times $d(x, y, z) = s_i$ for each possible s_i. These counts are the estimates of the symbol probabilities p_i of random process $v(x, y, z)$.

6. Determine a truncated Huffman code table using the p_i probabilities.

7. Scan the volume once again, using the predictor to calculate the difference values, and the Huffman code table to encode the difference values, producing the compressed volume.

In the compressed volume, it is necessary to store the following, in addition to the coded difference values:

- The estimated mean, \bar{v}.
- The three predictor coefficients, a_1, a_2, and a_3.
- The Huffman code table, which consists of the source symbols (difference values), s_i, and the assigned Huffman codes.

One will notice that, in the course of compressing a volume, the compression algorithm scans the volume four times. The first two scans of the volume are used to estimate the mean and variance, respectively, of the voxels. Theoretically these two estimations could be done simultaneously in one scan; however, greater mathematical precision is obtained in the estimate of the variance when the mean is already available. Since the mean and variance statistics are needed only for the optimal predictor, if one chooses to use the simple predictor as discussed previously, these two scans for statistics calculation are unnecessary. The last two scans of the volume are much more computationally intensive than the first two. The last scan calculates the same difference values that were calculated during the third scan of the volume; however, to prevent excessive memory costs, these differences values are not saved, making a fourth scan of the volume necessary.

D. The Decompression Algorithm

The decompression algorithm is as follows:

1. Read the estimated mean, \bar{v}, and the predictor coefficients, a_1, a_2, and a_3, from the compressed file.

2. Read the Huffman table from the compressed file.

3. For each voxel in the reconstructed volume $v(x, y, z)$, calculate the predicted value $\bar{v}(x, y, z)$ using (17). Read the next Huffman code from the compressed file and look up the difference value, $d(x, y, z)$, in the Huffman table for that code. Reconstruct the current voxel:

 \[
 v(x, y, z) = \bar{v}(x, y, z) + d(x, y, z) \quad (18)
 \]
Table 2: Execution Times for the Compression Programs on 3dhead.vox. These times are for a HP 9000 Series 735.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time (min)</th>
<th>Compress</th>
<th>Decompress</th>
</tr>
</thead>
<tbody>
<tr>
<td>compvox</td>
<td>4.7</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>compress</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>zip</td>
<td>0.8</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>gzip</td>
<td>1.4</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>pack</td>
<td>0.2</td>
<td></td>
<td>0.3</td>
</tr>
</tbody>
</table>

Figure 2: Percentage compression of several data-compression programs on volume data

VI. Results

Table 2 compares the execution times for the different compression programs on one volume. Times for both compression and decompression are given.

Table 3 compares the compression performance of our volume compression algorithm, compvox, with the compress, zip, gzip, and pack programs. Our algorithm achieves the greatest compression for all the volumes except one. The volumes used here are from the Chapel Hill volume-rendering test dataset and are taken from actual MRI, CT, and electron-density-map data. Using compvox on the entire collection of these volumes saves 9 megabytes over compress. Fig. 2 is a bar graph of some of the data of Table 3 comparing the performance of compvox, gzip, and compress for all the volumes.

Table 4 gives an indication of the performance, in terms of entropy, of compvox. Table 4 shows the original voxel entropies (the entropy of \(v(x, y, z) \)); the entropy of the difference values, \(d(x, y, z) \); and the average compression expressed in terms of the average number of bits per voxel of the compressed volume. Note that the predictor reduces entropy; i.e., \(d(x, y, z) \) has less entropy than \(v(x, y, z) \). The Huffman coder produces an output that is only, on average, 0.5 bits/voxel above the entropy of \(d(x, y, z) \).

As mentioned before, a more sophisticated entropy coding scheme, such as arithmetic coding, may produce better results than Huffman coding in practice. However, the entropy of \(d(x, y, z) \) represents a lower bound for any entropy coding scheme. Thus, arithmetic coding could achieve at best only 0.5 bits/voxel, or 3%, additional compression over Huffman coding.

VII. Conclusions

In this paper, we have presented an algorithm that is designed specifically for the compression of volume data. From the results presented in Tables 2 and 3, one could conclude that, although our volume-compression algorithm yields compression superior to generic compression routines such as compress, zip, gzip, and pack, it requires significantly more processing time. However, the current implementation of compvox has not been optimized for execution speed; rather, it is prototype code that has been made flexible to facilitate modifications during the development of the algorithm. In particular, the compvox code makes use of a great deal of costly dynamic memory allocation and deallocation which slows the running speed significantly. It must be emphasized that our code is a prototype; greater attention to speed issues would make a practical version of our code more competitive with the generic routines.

The Huffman coding used here could be replaced with a more sophisticated entropy coding method, such as arithmetic coding. However, as stated in the previous section, doing so could result in, at best, only 3% additional compression. It is anticipated that greater compression improvement will be obtained by improving the predictor (and thus lowering the entropy of the difference values) rather than fine-tuning the entropy-coding method.

As discussed previously, the optimal predictor that we design for each volume assumes that the statistics (mean and covariance) are wide-sense stationary throughout the volume. In any real volume, the best we can obtain is only some local stationarity; that is, the statistics are invariant only over small portions of the volume. One could obtain better predictions (and, thus, better compression) by designing a number of different predictors, each optimized to a particular section of the volume, rather than choosing one predictor for the entire volume. We propose dividing
Table 3: Percentage Compression of Several Data-Compression Programs on Volume Data

<table>
<thead>
<tr>
<th>Volume</th>
<th>Original Data</th>
<th>compress % Comp.</th>
<th>zip % Comp.</th>
<th>gzip % Comp.</th>
<th>pack % Comp.</th>
<th>compvox % Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution</td>
<td>Size (Mb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dcknee.vox</td>
<td>256 x 256 x 127</td>
<td>15.9</td>
<td>17.2%</td>
<td>24.9%</td>
<td>27.3%</td>
<td>40.1%</td>
</tr>
<tr>
<td>CThead.vox</td>
<td>256 x 256 x 113</td>
<td>14.1</td>
<td>46.0%</td>
<td>48.9%</td>
<td>50.3%</td>
<td>53.9%</td>
</tr>
<tr>
<td>MRbrain.vox</td>
<td>256 x 256 x 109</td>
<td>13.6</td>
<td>40.2%</td>
<td>43.2%</td>
<td>45.0%</td>
<td>52.7%</td>
</tr>
<tr>
<td>3dhead.vox</td>
<td>256 x 256 x 109</td>
<td>13.6</td>
<td>29.9%</td>
<td>33.8%</td>
<td>36.1%</td>
<td>48.5%</td>
</tr>
<tr>
<td>sod.30.vox</td>
<td>97 x 97 x 116</td>
<td>1.0</td>
<td>65.3%</td>
<td>62.3%</td>
<td>63.8%</td>
<td>58.4%</td>
</tr>
<tr>
<td>hipiph.vox</td>
<td>64 x 64 x 64</td>
<td>0.5</td>
<td>26.8%</td>
<td>28.5%</td>
<td>33.2%</td>
<td>20.7%</td>
</tr>
<tr>
<td>rna.vox</td>
<td>100 x 120 x 16</td>
<td>0.4</td>
<td>33.1%</td>
<td>35.8%</td>
<td>37.5%</td>
<td>35.3%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>36.9%</td>
<td>39.6%</td>
<td>41.9%</td>
<td>50.8%</td>
</tr>
</tbody>
</table>

Table 4: Comparison of Various Quantities (in bits/voxel) used by compvox

<table>
<thead>
<tr>
<th>Volume</th>
<th>Voxel Entropy</th>
<th>Difference Entropy</th>
<th>Average Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>3dcknee.vox</td>
<td>9.58</td>
<td>9.02</td>
<td>9.58</td>
</tr>
<tr>
<td>CThead.vox</td>
<td>7.91</td>
<td>7.01</td>
<td>7.47</td>
</tr>
<tr>
<td>MRbrain.vox</td>
<td>7.93</td>
<td>7.34</td>
<td>7.57</td>
</tr>
<tr>
<td>3dhead.vox</td>
<td>8.65</td>
<td>7.96</td>
<td>8.24</td>
</tr>
<tr>
<td>hipiph.vox</td>
<td>10.29</td>
<td>7.96</td>
<td>9.30</td>
</tr>
<tr>
<td>rna.vox</td>
<td>7.97</td>
<td>7.01</td>
<td>7.14</td>
</tr>
<tr>
<td>Average</td>
<td>8.72</td>
<td>7.72</td>
<td>8.21</td>
</tr>
</tbody>
</table>

the volume into an octree, as is done in [16]. A separate predictor would be designed for each leaf node. A suitable criterion would determine the sizes of the leaf nodes based on the following tradeoff. With small leaf nodes, the predictors will be better able to exploit local stationarity. However, if the leaves are too small, not enough data would be available to precisely estimate the local voxel statistics. Somewhat similar approaches, wherein the predictor is changed as local statistics change, have been developed for 2D image compression; these approaches fall under the general heading of adaptive DPCM and are discussed in [9].

Localization of the predictor is one avenue we are currently pursuing to improve the compression performance of our algorithm. Additionally, we are examining whether increasing the neighborhood of the predictor from the 6-neighborhood to the 18- or 26-neighborhood will appreciably improve performance, and a heuristic for determining the L_1 value for the truncated Huffman code is under exploration.

Acknowledgements

James E. Fowler is supported by a PhD Scholarship from AT&T. This research was supported by the National Science Foundation under grant CCR-9211288. We thank the University of North Carolina at Chapel Hill for the use of the volumetric datasets.

References

